1,721 research outputs found

    Test of Guttmann and Enting's conjecture in the eight-vertex model

    Full text link
    We investigate the analyticity property of the partially resummed series expansion(PRSE) of the partition function for the eight-vertex model. Developing a graphical technique, we have obtained a first few terms of the PRSE and found that these terms have a pole only at one point in the complex plane of the coupling constant. This result supports the conjecture proposed by Guttmann and Enting concerning the ``solvability'' in statistical mechanical lattice models.Comment: 15 pages, 3 figures, RevTe

    Extended frequency turbofan model

    Get PDF
    The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine

    Poor attention rather than hyperactivity/impulsivity predicts academic achievement in very preterm and full-term adolescents

    Get PDF
    Background: Very preterm (VP) children are at particular risk for attention deficit/hyperactivity disorder (ADHD) of the inattentive subtype. It is unknown whether the neurodevelopmental pathways to academic underachievement are the same as in the general population. This study investigated whether middle childhood attention or hyperactivity/impulsivity problems are better predictors of VP adolescents' academic achievement. Method: In a geographically defined prospective whole-population sample of VP (<32 weeks gestation) and/or very low birth weight (<1500 g birth weight) (VLBW/VP; n = 281) and full-term control children (n = 286) in South Germany, ADHD subtypes were assessed at 6 years 3 months and 8 years 5 months using multiple data sources. Academic achievement was assessed at 13 years of age. Results: Compared with full-term controls, VLBW/VP children were at higher risk for ADHD inattentive subtype [6 years 3 months: odds ratio (OR) 2.8, p < 0.001; 8 years 5 months: OR 1.7, p = 0.020] but not for ADHD hyperactive-impulsive subtype (6 years 3 months: OR 1.4, p = 0.396; 8 years 5 months: OR 0.9, p = 0.820). Childhood attention measures predicted academic achievement in VLBW/VP and also full-term adolescents, whereas hyperactive/impulsive behaviour did not. Conclusions: Attention is an important prerequisite for learning and predicts long-term academic underachievement. As ADHD inattentive subtype and cognitive impairments are frequent in VLBW/VP children, their study may help to identify the neurofunctional pathways from early brain development and dysfunction to attention problems and academic underachievement

    Quantum Limits in Space-Time Measurements

    Get PDF
    Quantum fluctuations impose fundamental limits on measurement and space-time probing. Although using optimised probe fields can allow to push sensitivity in a position measurement beyond the "standard quantum limit", quantum fluctuations of the probe field still result in limitations which are determined by irreducible dissipation mechanisms. Fluctuation-dissipation relations in vacuum characterise the mechanical effects of radiation pressure vacuum fluctuations, which lead to an ultimate quantum noise for positions. For macroscopic reflectors, the quantum noise on positions is dominated by gravitational vacuum fluctuations, and takes a universal form deduced from quantum fluctuations of space-time curvatures in vacuum. These can be considered as ultimate space-time fluctuations, fixing ultimate quantum limits in space-time measurements.Comment: 11 pages, to appear in Quantum and Semiclassical Optic

    Testing gravity law in the solar system

    Full text link
    The predictions of General relativity (GR) are in good agreement with observations in the solar system. Nevertheless, unexpected anomalies appeared during the last decades, along with the increasing precision of measurements. Those anomalies are present in spacecraft tracking data (Pioneer and flyby anomalies) as well as ephemerides. In addition, the whole theory is challenged at galactic and cosmic scales with the dark matter and dark energy issues. Finally, the unification in the framework of quantum field theories remains an open question, whose solution will certainly lead to modifications of the theory, even at large distances. As long as those "dark sides" of the universe have no universally accepted interpretation nor are they observed through other means than the gravitational anomalies they have been designed to cure, these anomalies may as well be interpreted as deviations from GR. In this context, there is a strong motivation for improved and more systematic tests of GR inside the solar system, with the aim to bridge the gap between gravity experiments in the solar system and observations at much larger scales. We review a family of metric extensions of GR which preserve the equivalence principle but modify the coupling between energy and curvature and provide a phenomenological framework which generalizes the PPN framework and "fifth force" extensions of GR. We briefly discuss some possible observational consequences in connection with highly accurate ephemerides.Comment: Proceedings of Journ\'ees 2010 "Syst\`emes de r\'ef\'erence spatio-temporels", New challenges for reference systems and numerical standards in astronom

    Constraints on f(RijklRijkl)f(R_{ijkl}R^{ijkl}) gravity: An evidence against the covariant resolution of the Pioneer anomaly

    Full text link
    We consider corrections in the form of ΔL(RijklRijkl)\Delta L(R_{ijkl}R^{ijkl}) to the Einstein-Hilbert Lagrangian. Then we compute the corrections to the Schwarszchild geometry due to the inclusion of this general term to the Lagrangian. We show that ΔL3=α1/3(RijklRijkl)1/3\Delta L_3=\alpha_{{1/3}}(R_{ijkl}R^{ijkl})^{{1/3}} gives rise to a constant anomalous acceleration for objects orbiting the Sun onward the Sun. This leads to the conclusion that α1/3=(13.91±2.11)×1026(1meters)2/3\alpha_{{1/3}}=(13.91\pm 2.11) \times 10^{-26}(\frac{1}{\text{meters}})^{{2/3}} would have covariantly resolved the Pioneer anomaly if this value of α1/3\alpha_{{1/3}} had not contradicted other observations. We notice that the experimental bounds on ΔL3\Delta L_3 grows stronger in case we examine the deformation of the space-time geometry around objects lighter than the Sun. We therefore use the high precision measurements around the Earth (LAGEOS and LLR) and obtain a very strong constraint on the corrections in the form of ΔL(RijklRijkl)\Delta L(R_{ijkl}R^{ijkl}) and in particular ΔL=αn(RijklRijkl)n\Delta L=\alpha_n(R_{ijkl}R^{ijkl})^n. This bound requires α1/36.12×1029(1meters)2/3\alpha_{{1/3}}\leq6.12\times 10^{-29}(\frac{1}{\text{meters}})^{{2/3}}. Therefore it refutes the covariant resolution of the Pioneer anomaly.Comment: ...v5: references added, new discussions adde

    Electromagnetic fields in a 3D cavity and in a waveguide with oscillating walls

    Get PDF
    We consider classical and quantum electromagnetic fields in a three-dimensional (3D) cavity and in a waveguide with oscillating boundaries of the frequency Ω\Omega . The photons created by the parametric resonance are distributed in the wave number space around Ω/2\Omega/2 along the axis of the oscillation. When classical waves propagate along the waveguide in the one direction, we observe the amplification of the original waves and another wave generation in the opposite direction by the oscillation of side walls. This can be understood as the classical counterpart of the photon production. In the case of two opposite walls oscillating with the same frequency but with a phase difference, the interferences are shown to occur due to the phase difference in the photon numbers and in the intensity of the generated waves.Comment: 8 pages revTeX including 1 eps fi

    Pioneer 10 Doppler data analysis: disentangling periodic and secular anomalies

    Full text link
    This paper reports the results of an analysis of the Doppler tracking data of Pioneer probes which did show an anomalous behaviour. A software has been developed for the sake of performing a data analysis as independent as possible from that of J. Anderson et al. \citep{anderson}, using the same data set. A first output of this new analysis is a confirmation of the existence of a secular anomaly with an amplitude about 0.8 nms2^{-2} compatible with that reported by Anderson et al. A second output is the study of periodic variations of the anomaly, which we characterize as functions of the azimuthal angle φ\varphi defined by the directions Sun-Earth Antenna and Sun-Pioneer. An improved fit is obtained with periodic variations written as the sum of a secular acceleration and two sinusoids of the angles φ\varphi and 2φ2\varphi. The tests which have been performed for assessing the robustness of these results are presented.Comment: 13 pages, 6 figures, minor amendment

    Dynamical Casimir Effect in a Leaky Cavity at Finite Temperature

    Get PDF
    The phenomenon of particle creation within an almost resonantly vibrating cavity with losses is investigated for the example of a massless scalar field at finite temperature. A leaky cavity is designed via the insertion of a dispersive mirror into a larger ideal cavity (the reservoir). In the case of parametric resonance the rotating wave approximation allows for the construction of an effective Hamiltonian. The number of produced particles is then calculated using response theory as well as a non-perturbative approach. In addition we study the associated master equation and briefly discuss the effects of detuning. The exponential growth of the particle numbers and the strong enhancement at finite temperatures found earlier for ideal cavities turn out to be essentially preserved. The relevance of the results for experimental tests of quantum radiation via the dynamical Casimir effect is addressed. Furthermore the generalization to the electromagnetic field is outlined.Comment: 48 pages, 8 figures typos corrected & references added and update

    Vacuum fluctuations, accelerated motion and conformal frames

    Get PDF
    Radiation from a mirror moving in vacuum electromagnetic fields is shown to vanish in the case of a uniformly accelerated motion. Such motions are related to conformal coordinate transformations, which preserve correlation functions characteristic of vacuum fluctuations. As a result, vacuum fluctuations remain invariant under reflection upon a uniformly accelerated mirror, which therefore does not radiate and experiences no radiation reaction force. Mechanical effects of vacuum fluctuations thus exhibit an invariance with respect to uniformly accelerated motions.Comment: 7 page
    corecore